
On Power and Fault-Tolerance Optimization
in FPGA Physical Synthesis ∗

Manu Jose1 Yu Hu2 Rupak Majumdar1,3

1. Computer Science Department, University of California, Los Angeles
2. Electrical and Computer Engineering Department, University of Alberta

3. Max-Planck Institute for Software Systems, Kaiserslautern

ABSTRACT
Power and fault tolerance are deemed to be two orthogonal opti-
mization objectives in FPGA synthesis, with independent attempts
to develop algorithms and CAD tools to optimize each objective.
In this paper, we study the relationship between these two opti-
mizations and show empirically that there are strong ties between
them. Specifically, we analyze the power and reliability optimiza-
tion problems in FPGA physical synthesis (i.e., packing, place-
ment, and routing), and show that the intrinsic structures of these
two problems are very similar. Supported by the post routingre-
sults with detailed power and reliability analysis for a wide selec-
tion of benchmark circuits, we show that with minimal changes
—fewer than one hundred lines of C code— an existing power-
aware physical synthesis tool can be used to minimize the fault
rate of a circuit under SEU faults. As a by-product of this study,
we also show that one can improve the mean-time-to-failure by
100% with negligible area and delay overhead by performing fault-
tolerant physical synthesis for FPGAs. The results from this study
show a great potential to develop CAD systems co-optimized for
power and fault-tolerance.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated circuits – Design aids

General Terms
Design, Reliability, Performance

Keywords
Fault Tolerance, Low Power, Physical Synthesis, FPGA

1. INTRODUCTION
Optimizing for power is one of the main criteria in FPGA synthe-

sis, with an extensive body of research and commercial tool support

∗This research was sponsored in part by the DARPA grant
HR0011-09-1-0037, the NSF grant CCF-0953994, and an NSERC
discovery program.

.

in the FPGA CAD flow. More recently, there is a growing interest
in optimizing FPGA designs with respect to faults arising out of
soft errors, motivated by increasing vulnerability of SRAM-based
FPGAs to soft errors due to aggressive CMOS scaling. Various
techniques to minimize fault rates have emerged to increasethe
mean time to failure (MTTF) for applications such as enterprise
servers and Internet routers [22].

Power and fault tolerance are studied as two unrelated, or even
mutually competitive, optimization objectives in FPGA synthesis.
For instance, fault tolerance based on triple modular redundancy
(TMR) requires over 3× power overhead. As a result, a common
problem formulation for fault-tolerance optimization is to maxi-
mize the robustness (e.g., MTTF) under a specific power constraint
[18] or minimize the power overhead under a target fault rate. Com-
pared to power optimizations, synthesis for fault-tolerance is less
mature, both in the scope and scalability of tools and in commer-
cial integration in CAD tools.

In this paper, we empirically demonstrate several, perhapssur-
prising, intrinsic connections between power and fault rate opti-
mizations. First, we experimentally show that the existingpower-
aware physical synthesis already simultaneously optimizes for fault
tolerance, and provide a theoretical justification. Further, we show
we can minimally modify an existing power-aware physical syn-
thesis tool to optimize for fault tolerance: we obtain a consistent
improvement in MTTF (100% MTTF improvement on average) by
slightly changing the interpretation of the cost function in an ex-
isting power-aware physical synthesis tool. Overall, thisrequired
fewer than 100 lines of change in the source code! Practically, our
results indicate that optimizing for fault tolerance can take advan-
tage of the relatively mature power optimization techniques.

Our empirical observations are based on a case study in FPGA
physical synthesis (clustering, placement and routing) exploring
the relationship between the two optimizations. The rationale of
using physical synthesis to study power-reliability relationship is
two-fold: (a) physical synthesis has been proven to be effective for
power optimization [19, 15]; (b) physical (layout) information is
necessary to accurately capture the bit-level SEU effect, which can
be used to guide the fault-tolerant optimization.

Unlike power-aware physical synthesis [19], a thorough study
of fault-tolerant physical synthesis was absent so far. Most of
the existing work has been focused on redundancy-based meth-
ods (e.g., TMR [24] or partial TMR [16]). Recent attention has
been moved to sensitivity-based methods, which consider the func-
tional or physical sensitivity of a configuration bit to SEU and try
to reduce the overall sensitivity of a design with minimal overhead.
There are discrete pieces of research using sensitivity-based fault
tolerance, e.g., logic masking-based re-synthesis [14, 12], defect-
aware placement [4], and physical-sensitivity-aware routing [13,



17]). However, there has been no recorded, existing systematic
study on the effect of fault-tolerance optimizations at various phys-
ical synthesis steps.

In this paper, we perform a cross-layer study of sensitivity-based
fault tolerance on conventional physical synthesis flow. Follow-
ing the methodology used in the power-aware physical synthesis
[19], our fault-tolerant physical synthesis incorporatesthe SEU-
sensitivity into the cost functions in all physical synthesis phases.
Instead of devising a new set of cost functions for fault toler-
ance, we discover the intrinsic connection between power-aware
and fault-tolerant physical synthesis, which allows us to employ
the identical structures of the cost function used in power-aware
physical synthesis to enhance fault tolerance. So instead of switch-
ing activity, if we feed SEU-sensitivity into the cost function of
power-aware physical synthesis optimization we get fault tolerance
optimization. This observation further suggests a great potential
of simultaneously optimizing both power and fault tolerance. Our
fault-tolerant physical synthesis shows that placement isthe most
effective phase for fault-tolerant optimization, and the gains ob-
tained from different physical synthesis phases are cumulative.

Our study provides initial evidence of the intrinsic connection
between power and fault tolerance, and suggests the potential of
simultaneous optimization for these two objectives, perhaps also in
other phases of design.

2. EXPERIMENTAL FRAMEWORK

2.1 Fault, Delay, and Power Model
We assume thesingle faultmodel, i.e., at most one single event

upset (SEU) occurs in a clock period, based on the real SER in com-
mercial SRAM-based FPGAs [11]. Across an FPGA, we assume
that the SER on all configuration bits is uniformly distributed, i.e.,
all bits have an identical probability to be faulty. The samemodel
has been used in recent work [12, 14]. We consider SEUs on con-
figuration bits of both LUTs and routing. An SEU that occurs in
an LUT configuration bit results in the flip of the logic value and
consequently changes the logic function encoded by the LUT.

Given an FPGA-based design, a detailed analysis of the im-
pact of faults at the physical level is expensive. For example, the
logic value associated with a faulty routing signal due to a bridging
fault [5] depends on both the logic value and the individual driv-
ing strength of the bridged nets. In our experiments, we makethe
following simplified assumption:an SEU that occurs in a routing
configuration always causes the flip of the logic value of the corre-
sponding routing signal. Note that this is a pessimistic assumption
and estimates an upper bound of the fault rate. While we make this
simplifying assumption for efficient fault simulation, ourproposed
algorithm can be applied to more sophisticated fault models(e.g.,
[6]) by replacing our fault simulator with a more sophisticated one.

To quantify the impact of the SEU of an configuration bit, we
define itssensitivityas follows. The sensitivity,s(c), of a config-
uration bitc is the percentage of primary input vectors that cause
erroneous values at primary outputs of the circuit due to theflip of
the logic value ofc. Intuitively, the sensitivity of a configuration bit
shows how likely the flip of this bit is observed at the circuitout-
puts. The higher the sensitivity of a configuration bit is, the more
input vectors may sensitize the SEU that occurs at this bit. The
overall fault rateFR of a circuit is

FR =

P

{s(c) | configuration bitc}
total number of configuration bits

(1)

Using the above fault model, we perform a fault simulation using
Monte Carlo sampling to estimate the sensitivity of a singlebit and

Figure 1: FPGA Synthesis Flow.

then evaluate the overall fault rate of the entire circuit. In all exper-
imental results reported in the rest of this paper, the faultrate of a
circuit is evaluated based on a physical-level fault simulation which
returns the sensitivity of each configuration bit after placement and
routing by VPR [9, 10, 21]. The fault-tolerance of a circuit is often
measured usingmean time to failure(MTTF), which is inversely
proportional to the fault rate [23, 12, 14].

We use the same delay and power model as [19], and only dy-
namic power is considered in this work. The switch activities are
collected using random simulation. In all experimental results re-
ported in the rest of this paper, the power and delay values are pro-
duced based on resistance and capacitance extracted from designs
after placement and routing.

2.2 CAD Flow and Experimental Settings
The baseline FPGA CAD flow is as shown in Figure 1. A de-

sign is first synthesized and mapped to LUTs using Berkeley ABC
[1]. Then three physical synthesis phases, including clustering (us-
ing T-VPACK [3, 10]), placement and routing (using VPR [9]),are
performed. For the fault-tolerant flow, a logic-level faultsimula-
tion with 10K random vectors is performed in the mapped circuit,
and the sensitivity of each LUT configuration bit and each logic
connection is extracted. For power-aware flow, the switching activ-
ity of each net is obtained by the Monte Carlo simulation with10K
random vectors. 18 circuits from IWLS [2] and MCNC [25] bench-
marks are tested. The characteristics of the benchmark circuits are
shown in Table 1.

Table 1:Characteristics of benchmark circuits

Name CI# CO# NETS# Name CI# CO # NETS#
dalu 75 16 1497 spi 276 274 4592

pci_spoci_ctrl 85 73 1813 ss_pcm 106 96 428
C5315 178 123 1798 steppermotordrive29 29 237

des 256 245 5195 systemcdes 322 255 3765
pdc 16 40 13414 C499 41 32 280

aes_core 789 659 31606 C7552 207 108 2110
des_area 368 192 7613 k2 45 45 2761

sasc 133 129 703 pair 173 137 1786
simple_spi 148 144 1046 tv80 373 391 12012

An island-style FPGA architecture is assumed in this work. This
architecture includes an array of clustered logic blocks (CLB)s in-
terconnected by programmable routing. Each CLB hasI inputs
andN outputs. It containsN basic logic elements (BLEs), each of
which includes an LUT and a FF. In our experiments, we test the



Table 2:Architectures used in the experiments

namecluster_size(N)LUT_input# cluster_input#(I)
4x4 4 4 10
4x10 10 4 22
6x4 4 6 15
6x10 10 6 33

algorithms under the four architecture settings shown in Table 2.

3. CLUSTERING

3.1 Review of Power-Aware Clustering
A popular framework of FPGA clustering algorithm is a greedy

approach [8]. It iteratively selects a LUT, which is used as the seed
of a new cluster. Based on this seed LUT, other LUTs are added
into this cluster according to anattractive functionbetween these
LUTs and the seed LUT.

The power-aware clustering, i.e., P-T-VPack, [19] attracts high-
activity nets inside CLBs by penalizing the global interconnect
(nets outside CLBs) with high switching activities. Specifically it
modifies the attraction function in the following ways:

1. An LUT whose input and output wires have the highest
switching activity is selected as the seed LUT.

2. Given a clusterC containing the seed LUT, the attraction
function that selects the remaining LUTs to be packed into
this cluster is defined as

AFp(B) = α · Crit(B)+
(1 − α) · 1

G
[β · (

P

{Weight(i) | i ∈ Nets(B) ∩ Nets(C)})+
(1 − β) · 1

fAvg

P

{f(i)|i ∈ Nets(B) ∩ Nets(C)}]

whereCrit(B) measures how close LUTB is to be on the
critical path,Net(B) is the set of nets connected to LUTB,
Net(C) is the set of nets connected to those LUTs already
selected in clusterC, f(i) is the estimated switching activity
of net i, fAvg is the average switching activity of all nets
in the circuit,α andβ are user-defined constants andG is
a normalizing factor. A more detailed explanation of this
formula can be found in Section 5.1 of [19].

3.2 Morphing P-T-VPack for Fault Tolerance
In the optimization for fault-tolerance, the fault rate at aglobal

interconnect is proportional to the average sensitivity ofSRAMs
along its routing. Therefore, to minimize the overall faultrate
(shown in (2)), a fault-tolerant clustering should encapsulate in-
terconnects with high sensitivities inside CLBs, which results in a
very similar objective to power-aware clustering. Based onthis ob-
servation, we make the following modification in the power-aware
attraction function

1. An LUT whose input and output wires have the highest sen-
sitivity is selected as the seed LUT.

2. In AFp(B), we replace the switching activityf(i) of a net
i with its sensitivitys(i). Note that the sensitivity of a net
is the sum of sensitivities of all source-to-sink edges and the
source node.

Such modification of the attraction function requires very small
changes of the source code in a power-aware clustering. For a
modularized implementation, changes in the source code arenot
necessary since the switching activity annotated network is given
as an input file and it can be replaced by the one with annotated

Table 3:Fault-tolerant clustering results

Total sensitivity Crit_Delay(s)
Arch T-VPack F-T-VPack T-VPack F-T-VPack
4x4 672.45 604.62 (-10%)4.34E-08 4.33E-08
4x10 633.47 430.84 (-32%)3.80E-08 4.08E-08
6x4 466.15 429.98 (-8%) 3.61E-08 3.52E-08
6x10 402.12 259.50 (-36%)3.24E-08 3.24E-08

sensitivity values. In the rest of this paper, this adapted Clustering
for fault tolerance is calledF-T-VPack. In (2), we experimentally
found the bestα andβ values to be 0 and 0.6, respectively.

Table 3 shows the geomean of the total sensitivity1 and critical
path delay for 18 benchmark circuits under each architecture set-
ting. For the cluster size of 4, F-T-VPack reduces the fault rate by
8%-10%, while for the cluster size of 10, F-T-VPack reduces the
fault rate by over 30%. Intuitively, the larger the cluster size is, the
more highly-sensitive LUTs can be encapsulated in one CLB and
therefore the more effective F-T-VPack is. While F-T-VPackre-
duces the fault rate, it generally does not degrade the performance,
i.e., the critical path delay of the circuits synthesized byF-T-VPack
is comparable to that by the timing-driven clustering, T-VPack. In
addition, F-T-VPack results in almost the same number of clusters
as T-VPack, which is not shown in detail due to the space limit.

3.3 Cross Domain Optimization
With the success of the adaption from power-aware clustering to

fault-tolerant one, this subsection studies the potentialof cross op-
timization between power and fault tolerance, i.e., using the power-
aware clustering to optimize a design and measuring the change of
the fault rate using MTTF, or vice versa.

The only difference between the power-aware clustering andthe
fault-tolerant clustering is the third term in the attraction function
AFp, where the switching activity and sensitivity values are used
for power and fault tolerance respectively. Although thesetwo val-
ues have different physical meaning, it is worthwhile to investi-
gate their inherent relationship. Essentially, the switching activity
of a node (i.e., an LUT) in the Boolean network is determined by
its SDC (satisfiability don’t-cares), which constrains theinput pat-
terns that can sensitize the node. On the other hand, the sensitivity
of a node is determined by both its SDC and ODC (Observability
don’t-cares), since a bit flip in a node may be masked by eitherthe
SDC or the ODC of this node and will not propagate to the pri-
mary outputs. Therefore, the switching activity and sensitivity are
two closely related values. Particularly, for those nodes close to the
primary outputs or latch inputs, these two values should be highly
correlated since their observability’s are 100% and SDC becomes
the only factor to determine their both values.

Such intrinsic connection between the switching activity and
sensitivity values implies the possibility of simultaneous optimiza-
tion for both power and fault-tolerance in the clustering, i.e., we
expect improvement of fault tolerance by taking the original objec-
tive functionAFp in power-aware clustering without any changes!

To verify this hypothesis, two clustering algorithms, i.e., P-T-
VPack and F-T-VPack, are performed on 18 benchmark circuits
for four architectures. Table 4 shows the average power reduction
and MTTF increase, both compared with T-VPack. Since our op-
timization does not change the area of an FPGA chip, MTTF is
inversely proportional to the total sensitivity based on equation (2).
In the table, the positive (negative) percent means we reduce (in-

1Assuming the same FPGA device, the fault rate is proportional to
the total sensitivity based on (2).



Table 4:Simultaneous power and fault tolerance optimization in clustering
(compared with T-VPack)

P-T-VPack F-T-VPack
Arch Power MTTF Power MTTF

ReductionIncreaseReductionIncrease
4x4 1% 4% -11% 11%
4x10 10% 2% 12% 47%
6x4 5% 1% 5% 8%
6x10 5% 4% 4% 55%

crease) power or increase (reduce) MTTF. Using P-T-VPack, we
can consistently simultaneously reduce power and increaseMTTF.
However, the increase in MTTF obtained by P-T-VPack is signif-
icantly less than that obtained by F-T-VPack. On the other hand,
F-T-VPack almost always simultaneously reduces power and in-
creases MTTF, except for 4x4 architecture. It is interesting to see
that F-T-VPack gives higher power reduction for 4x10 architec-
ture compared with P-T-VPack, due to the interconnect uncertainty
shown in [20].

4. PLACEMENT

4.1 Review of Power-Aware Placement
The power-aware placement, P-T-VPlace [19], follows the sim-

ulated annealing-based placement algorithm used in VPR [9]. The
P-T-Vplace cost function includes the following three components:

1. Wiring cost: the sum of the bounding box dimensions of all
the nets. That is, if there areNnets, andbbx(i) andbby(i)
are thex andy dimensions of the bounding box of neti,

WiringCost =

Nnets
X

i=1

q(i) · [bbx(i) + bby(i)]

whereq(i) is used to scale the bounding boxes to better esti-
mate wire length for nets with more than 3 terminals,

2. Timing cost: the sum of the product of the delay and the
timing slack of nets.

TimingCost =
X

∀i,j∈circuit

Delay(i, j)Crit(i, j)CE

where theDelay(i, j) is the estimated delay of the connec-
tion from sourcei to sinkj, CE is a constant, andCrit(i, j)
is an indication of how close to the critical path is the con-
nection.

3. Power cost: the sum of the product of the bounding box size
and the switching activity of nets.

PowerCost =

Nnets
X

i=1

q(i) · [bbx(i) + bby(i)] · f(i)

wheref(i) is the switching activity of neti. The total cost of a
placement is the sum of the wiring cost and the timing cost forall
the nets and is given by :

∆C = α · ∆TimingCost

PrevTimingCost
+(1 − α) · ∆WiringCost

PrevWiringCost

+γ · ∆PowerCost
PrevPowerCost

wherePrevTimingCost , PrevWiringCost andPrevPowerCost

are the auto-normalizing factors which are computed every temper-
ature, andα is an user defined constant used to control the relative
importance of these two factors.

Table 5:Fault-tolerant placement results

Total sensitivity Crit_Delay(s)
Arch T-VPlace F-T-VPlace T-VPlace F-T-VPlace
4x4 672.45 535.44 (-20%)4.34E-08 4.24E-08
4x10 633.47 441.02 (-30%)3.81E-08 3.86E-08
6x4 466.15 336.94 (-28%)3.62E-08 3.68E-08
6x10 431.02 272.74 (-37%)3.39E-08 3.32E-08

Table 6:Simultaneous power and fault tolerance optimization in placement
(compared with T-VPlace)

P-T-VPlace F-T-VPlace
Arch Power MTTF Power MTTF

ReductionIncreaseReductionIncrease
4x4 18% 13% 18% 26%
4x10 28% 27% 26% 44%
6x4 25% 14% 20% 38%
6x10 31% 46% 32% 58%

4.2 Morphing P-T-VPlace for Fault Tolerance
To reduce the fault rate of the circuit, we have to place the highly-

sensitive nets which connects between the clusters as closeas possi-
ble to minimize the total sensitivity along the global interconnect.2

Essentially, this is the same intuition behind the power-aware place-
ment. Therefore, our fault-tolerant placement, namelyF-T-VPlace,
takes the same cost function asP-T-VPlaceand replaces the switch-
ing activity term,f(i), with the sensitivity of a net. Note that the
bounding box terms in this cost function effectively modelsthe
number of configuration bits required by a net. We experimentally
decide thatα=0.5 andγ = 1, which give the best results. Like
the adaption in the clustering, such a replacement requiresminor
changes in the source code for a modularized implementation.

Table 5 shows the geomean of the total sensitivity and critical
path delay for 18 benchmark circuits under each architecture set-
ting. For different architectures,F-T-VPlaceconsistently reduces
the fault rate by 20%-30%. Similar toF-T-VPack, F-T-VPlace
does not degrade the performance, i.e., the critical path delay of
the circuits synthesized byF-T-VPlaceis comparable to that by the
timing-driven placement,T-VPlace.

4.3 Cross-Domain Optimization
This section further examines the possibility of simultaneously

optimizing power and fault tolerance in the placement. Particularly,
we perform P-T-VPlace and F-T-Vplace to measure both power and
MTTF. Table 6 shows the power reduction and the MTTF increase
achieved by these two placement algorithms, both compared with
T-VPlace on 18 benchmark circuits for four architectures. In the
table, the positive (negative) percent means we reduce (increase)
power or increase (reduce) MTTF. Overall, both F-T-VPlace and
P-T-VPlace simultaneously reduces power and increases MTTF
across all architecture settings. It is interesting that F-T-VPlace
achieves comparable power reduction as P-T-VPlace. Compared
with the increase in MTTF obtained by F-T-VPlace, P-T-VPlace is
30%-40% less effective.

5. ROUTING
2Although the internal configuration bits inside CLBs are also sen-
sitive to SEU, the global interconnect tends to require muchlarger
number of configuration bits and therefore it increases overall SEU
sensitivity.



5.1 Review of Power-Aware Routing
P-T-VRoute follows the Pathfinder algorithm [7] used in VPR

router [9]. Each net is iteratively routed based on the weight as-
signed to routing resource components. As pointed out in [19],
routing is the least effective phase for power optimization.

The power-aware router, P-T-VRoute [19], uses the cost func-
tion which has a delay term and a congestion term to evaluate a
routing trackn while forming a connection from sourcei to sinkj
as follows:

Cost(n) = Crit(i, j) · delayElmore(n)+
(1 − Crit(i, j)) · [ActCrit(i) · cap(n)+
(1 − ActCrit(i)) · b(n) · h(n) · p(n)]

The first term (delay) is the product of the delay of noden and
Crit(i, j). The second term (power) includescap(n), the capaci-
tance associated with routing resource noden, andActCrit(i), the
activity criticality of neti. The third term (congestion), which has
more weight when the criticality is low, has three components: b(n)
is the "base cost",h(n) is the historical congestion cost, andp(n) is
increased gradually as the algorithm progresses to discourage node
sharing, allowing the algorithm to produce a legal solution.

5.2 Morphing P-T-VRoute for Fault Toler-
ance

Similar to our adaption of power-aware placement, we replace
the activity criticality termActCrit(i) by sensitivity criticality,
which is a normalized sensitivity defined in the same form as
ActCrit(i). We keep the termcap(n) since the accumulated ca-
pacitance is approximately proportional to the number of configu-
ration bits. Such an approximation allows the minimal change of
the source code when morphing a power-aware routing to a fault-
tolerant version.

Table 7 shows the geometric mean of the total sensitivity and
critical path delay for 18 benchmark circuits under each architec-
ture setting. For different architectures, F-T-VRoute consistently
reduces the fault rate by 2%-14%. Similar to F-T-VPack and F-T-
VPlace, F-T-VRoute does not degrade the performance, i.e.,the
critical path delay of the circuits synthesized by F-T-VRoute is
comparable to that by the timing-driven routing, T-VRoute.Com-
pared to the placement and packing phases, fault-tolerant routing
gives less fault rate reduction because of the complicated routing
resource constraints.

Table 7:Fault-tolerant routing results

Total sensitivity Crit_Delay(s)
Arch T-VRoute F-T-VRoute T-VRoute F-T-VRoute
4x4 672.45 575.74 (-14%)4.34E-08 4.23E-08
4x10 633.47 613.69 (-3%) 3.80E-08 3.89E-08
6x4 466.15 450.79 (-3%) 3.61E-08 3.53E-08
6x10 431.02 421.9 (-2%) 3.38E-08 3.32E-08

5.3 Cross-Domain Optimization
P-T-VRoute and F-T-VRoute are individually performed on 18

benchmark circuits for four architectures. Table 8 shows the aver-
age power reduction and increase in MTTF, both compared withthe
original timing-driven router in VPR. In the table, the positive (neg-
ative) percent means we reduce (increase) power and increase (re-
duce) MTTF. Using the F-T-VRoute, we can consistently simulta-
neously reduce power and increase MTTF. Interestingly, thepower
reduction obtained by F-T-VRoute is comparable to that obtained
by P-T-VRoute. On the other hand, simultaneous optimization for

Table 8: Simultaneous power and fault tolerance optimization in routing
(compared with T-VRoute)

P-T-VRoute F-T-VRoute
Arch Power MTTF Power MTTF

ReductionIncreaseReductionIncrease
4x4 11% 2% 1% 17%
4x10 7% -7% 15% 3%
6x4 10% -6% 16% 3%
6x10 1% -10% 11% 2%

Table 9: Combined fault-tolerant physical synthesis phases (powerreduc-
tion and MTTF increase compared with the corresponding timing-driven
flow (T-VPack and VPR)

Arch 4x4 4x10 6x4 6x10
MTTF Power MTTF Power MTTF Power MTTF Power

increasereductionincreasereductionincreasereductionincreasereduction
CBB 11% -11% 47% 12% 8% 5% 55% 4%
BPB 26% 18% 44% 26% 38% 20% 58% 32%
BBR 17% 1% 3% 15% 3% 16% 2% 11%
CPB 61% 18% 92% 26% 62% 20% 119% 21%
CBR 23% 1% 49% 15% 27% 16% 56% 11%
BPR 45% 20% 52% 23% 57% 23% 68% 21%
CPR 81% 25% 114% 29% 80% 30% 122% 25%

power and fault tolerance is not observed in P-T-VRoute except for
4x4 architecture.

6. COMBINED RESULTS
Finally, we study the interaction among the above three physical

synthesis phases in order to answer the following two questions:

• Which phases are effective for simultaneously optimizing
power and fault tolerance?

• Is the optimization obtained by different phases cumulative?
I.e., what is the overlap between different combinations of
optimization?

Table 9 shows the power reduction and MTTF increase (com-
pared with the corresponding timing-driven flow) obtained by fault-
tolerant physical synthesis. All different combinations of F-T-
VPack (denoted by “C”), F-T-VPlace (denoted by “P”) and F-T-
VRoute (denoted by “R”) are compared in the table. Note that “B”
denotes the baseline algorithm (T-VPack, T-VPlace or T-VRoute).
For example, the row “BPR” denotes the the following CAD flow:
T-VPack, F-T-VPlace and F-T-VRoute. From this table, we have
the following observations:

• Among the three physical synthesis phases, placement is most
effective for optimizing fault tolerance across all architecture
settings. Packing is the second most effective and achieves
comparable fault rate reduction to placement for architectures
with large cluster size (4x10 and 6x10). Routing is less effec-
tive for fault tolerant optimization by itself.

• The fault tolerance optimization obtained from different syn-
thesis phases is cumulative and there is little overlap be-
tween different phases. Sometimes the combination of mul-
tiple phases achieves more improvement than the sum of the
gains obtained by individuals, e.g., the combined clustering and
placement increases the MTTF by 61% while the clustering and
placement individually increases the MTTF by only 11% and
26%, respectively, for 4x4 architecture.

• Using our fault-tolerant physical synthesis, we can almostcon-
sistently obtain simultaneous reduction for power and increase



Table 10:Combined power-aware physical synthesis phases (Power reduc-
tion and MTTF increase compared with the corresponding timing-driven
flow (T-VPack and VPR)

Arch 4x4 4x10 6x4 6x10
MTTF Power MTTF Power MTTF Power MTTF Power

increasereductionincreasereductionincreasereductionincreasereduction
CBB 1% 4% 1% 2% 5% 1% 5% 4%
BPB 18% 13% 28% 27% 25% 14% 31% 46%
BBR 11% 2% 7% -7% 10% -6% 1% -10%
CPB 21% 23% 38% 32% 25% 26% 43% 64%
CBR 6% 9% 12% 6% 12% 11% 8% 7%
BPR 29% 30% 43% 29% 33% 29% 33% 43%
CPR 31% 38% 40% 39% 36% 41% 42% 65%

in MTTF. Among three individual synthesis phases, place-
ment is the most effective one for simultaneous optimization
of power and fault tolerance. However, the power reduction
obtained by fault-tolerant physical synthesis is often notcumu-
lative, i.e., F-T-VPlace reduces the power by 32% but the com-
bined F-T-VPack, F-T-VPlace and F-T-VRoute only give 25%
power reduction for 6x10 architecture.

• The combination of the three phases gives 100% increase in
MTTF on average over the four architectures and 27% reduc-
tion in power which is the best result among all these combina-
tions.

To further examine the potential of using existing power-aware
physical synthesis for simultaneous optimization, Table 10 shows
power reduction and MTTF increase (compared with the corre-
sponding timing-driven flow) obtained by the power-aware phys-
ical synthesis. All different combinations of P-T-VPack (denoted
by “C”), P-T-VPlace (denoted by “P”) and P-T-VRoute (denoted
by “R”) are compared in the table.

• Although P-T-VRoute does not simultaneously optimize for
power and fault tolerance, the combination of P-T-VRoute and
other power-aware synthesis phases gives consistent simultane-
ous power reduction and increased MTTF.

• The MTTF increase obtained by the power-aware physical syn-
thesis is cumulative and sometimes super-linear. Note thatthis
is a different observation from the power reduction obtained
by fault-tolerant physical synthesis. The combination of three
phases gives the best results for simultaneous power reduction
and increased MTTF.

7. CONCLUSIONS AND FUTURE WORK
We have presented an experimental study exploring the interac-

tion between power and fault tolerance optimization in FPGAphys-
ical synthesis. We adapt an existing power-aware physical synthe-
sis tool chain [19], with fewer than 100 lines of change, to reduce
the soft error-induced fault rate. Our study shows that power and
fault tolerance are two closely connected optimization objectives,
and they can be concurrently optimized. Existing power-aware syn-
thesis flows already optimize for fault tolerance to a certain extent,
and minor changes in the implementation can result in much higher
fault tolerance. In our experiments, our fault-tolerant physical syn-
thesis tool chain increases the MTTF by 100% on average, while
simultaneously reducing the power dissipation by 25% on average,
both compared with the baseline physical synthesis (T-VPack and
VPR). Without any changes, an existing power-aware physical syn-
thesis tool simultaneously reduces the power dissipation by 35%
and increases the MTTF by 46% on average.

In future, we plan a similar study for other design phases and
using different optimization techniques.

8. REFERENCES
[1] ABC: A system for sequential synthesis and verification.In

http://www.eecs.berkeley.edu/ alanmi/abc/.
[2] IWLS 2005 benchmarks. In

http://iwls.org/iwls2005/benchmarks.html.
[3] V. Betz A. Marquardt and J. Rose. Using cluster-based logic blocks

and timing-driven packing to improve FPGA speed and density. In
Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, 1999.

[4] A.K. Agarwal, J. Cong, and B. Tagiku. Fault tolerant placement and
defect reconfiguration for nano-FPGAs. InProc. Int. Conf. on
Computer Aided Design, 2008.

[5] G. Asadi and M. Tahoori. Soft error rate estimation and mitigation
for SRAM-based FPGAs. InProc. ACM Intl. Symp.
Field-Programmable Gate Arrays, Feb 2005.

[6] H. Asadi, M.B. Tahoori, D. Kaeli B. Mullins, and K. Granlund. Soft
error susceptibility analysis of sram-based FPGAs in
high-performance information systems.IEEE Transactions on
Nuclear Science (TNS), 2007.

[7] V. Betz and J. Rose. Directional bias and non-uniformityin FPGA
global routing architectures. InProc. Int. Conf. on Computer Aided
Design, 1996.

[8] V. Betz and J. Rose. Cluster-based logic blocks for FPGAs:
Area-efficiency vs. input sharing and size.IEEE Custom Integrated
Circuits Conference, Santa Clara, CA, 1997, pp. 551 - 55,
pp:551–554, 1997.

[9] V. Betz and J. Rose. VPR: A new packing, placement and routing
tool for FPGA research. InFPL, 1997.

[10] V. Betz, J. Rose, and A. Marquardt.Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, Feb 1999.

[11] K. Chapman and L. Jones. SEU strategies for Virtex-5 devices. In
XAPP864, 2009.

[12] Z. Feng, Y. Hu, L. He, and R. Majumdar. IPR: In-place
reconfiguration for FPGA fault tolerance. InProc. Int. Conf. on
Computer Aided Design, 2009.

[13] S. Golshan and E. Bozorgzadeh. Single-Event-Upset (SEU)
Awareness in FPGA Routing. InProc. Design Automation Conf,
pages 330–333, June 2007.

[14] Y. Hu, Z. Feng, R. Majumdar, and L. He. Robust FPGA resynthesis
based on fault tolerant boolean matching. InProc. Int. Conf. on
Computer Aided Design, 2008.

[15] Y. Hu, Y. Lin, L. He, and T. Tuan. Physical synthesis for FPGA
interconnect power reduction by dual-vdd budgeting and retiming. In
ACM Trans. on Design Automation of Electronics Systems, 2008.

[16] Jonathan Johnson and Michael Wirthlin. Voter insertion algorithms
for FPGA designs using triple modular redundancy. InProc. ACM
Intl. Symp. Field-Programmable Gate Arrays, 2010.

[17] M. Jose, Y. Hu, R. Majumdar, and L. He. Rewiring for robustness. In
Proc. Design Automation Conf, 2010.

[18] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Low overhead
fault-tolerant FPGA systems.IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 6:212–222, 1998.

[19] J. Lamoureux and S.J.E. Wilton. On the interaction between
power-aware FPGA cad algorithms. InProc. Int. Conf. on Computer
Aided Design, 2003.

[20] Y. Lin and L. He. Stochastic physical synthesis for FPGAs with
pre-routing interconnect uncertainty and process variation. InProc.
ACM Intl. Symp. Field-Programmable Gate Arrays, 2007.

[21] A. Marquardt, V. Betz, and J.Rose. Timing-driven placement for
FPGAs. InProc. ACM Intl. Symp. Field-Programmable Gate Arrays,
pages 203–213, 2000.

[22] S. Mukherjee.Architecture design for soft errors. Morgan-Kaufman,
2008.

[23] S. Mukherjee, J. Emer, and S.K. Reinhardt. Radiation-induced soft
errors: An architectural perspective. InIntl. Symp. on
High-Performance Computer Architecture (HPCA), 2005.

[24] Xilinx TMRTool. Product brief. InXilinx Corporation, 2006.
[25] S. Yang. Logic synthesis and optimization benchmarks,version 3.0.

Technical report, Microelectronics Center of North Carolina
(MCNC), 1991.


